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Abstract. We present a microscopic equation for a growing interface with quenched noise of the
Tang and Leschhorn model (Tang L H and Leschhorn H 1992Phys. Rev.A 45R8309). Evolution
equations for the height, the mean height, and the roughness are reached in a simple way. An
equation for the interface activity density (or free sites density) as a function of time is obtained.
The microscopic equation allows us to express these equations in terms of two contributions: the
diffusion and the substratum contributions. All these equations shows the strong interplay between
the diffusion and the substratum contribution in the dynamics.

1. Introduction

The investigation of rough surfaces and interfaces has attracted much attention, for decades,
due to its importance in many fields, such as the motion of liquids in porous media, growth
of bacterial colonies, crystal growth, etc. Much effort has been devoted to understanding
the properties in these processes [1]. When a fluid wets a porous medium, a nonequilibrium
self-affine rough interface is generated. The interface has been characterized through scaling
of the interfacial widthw = 〈[hi − 〈hi〉]2〉1/2 with time t and lateral sizeL. The result is
the determination of two exponents,β andα, called dynamical and roughness exponents,
respectively. The interfacial widthw ∼ Lα for t � Lα/β , andw ∼ tβ for t � Lα/β . The
crossover time between these two regimes is of the order ofLα/β .

The formation of interfaces is determinated by several factors; it is very difficult to
theoretically discriminate all of them. An understanding of the dynamical nonlinearities, the
disorder of the media, and the theoretical model representing experimental results is difficult to
arrive at due the complex nature of the growth. The disorder affects the motion of the interface
and leads to its roughness. Two main kinds of disorder have been proposed: the ‘annealed’
noise that depends only on time and the ‘quenched’ disorder due to the inhomogeneity of the
media in which the moving phase is propagating. Some experiments, such as the growth of
bacterial colonies and the motion of liquids in porous media, where the disorder is quenched,
are well described by the directed percolation depinning model. This model was proposed
simultaneously by Tang and Leschhorn (TL) [2] and Buldyrevet al [3]. Braunstein and
Buceta [4] showed that the power-law scaling for the roughness only holds at criticality for
t � L (α/β = 1). Also, starting from the macroscopic equation for the roughness the
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dynamical exponent has been theoretically calculated. They foundβ = 0.629 for the critical
valueqc = 0.539.

In this paper, we use the TL model in order to investigate the imbibition of a viscous
fluid in a porous media driven by capillary forces. We write a microscopic equation (ME),
starting from the microscopic rules, for the evolution of the fluid height as a function of time.
The ME allows us to identify two contributions that dominate the dynamics of the system, the
‘diffusion’ and the ‘substratum’ contributions. In this context we study the mean height speed
(MHS), the interface activity density (IAD), i.e. the density of active sites of the interface, and
the roughness as a function of time. We show that the diffusion contribution smooths out the
surface forq well below the criticality but enhances the roughness near the critical value. To
our knowledge, the separation into two contributions for all the quantities studied in this paper
and the important role of the diffusion contribution to the critical power-law behaviour has
never been studied before.

This paper is organized as follows. In section 2 we derive the microscopic equation for the
evolution of height for the TL model. In section 3 we separate two contributions of the MHS:
the diffusion and the substratum one. We find a relation between these contributions that allows
us to write an analytical equation for the IAD. In section 4 the temporal derivative of square
interface width as a function of time is derived from the ME and the two contributions are
identified. These two contributions allow us to explain the mechanism of roughness. Finally,
we conclude with a discussion in section 5.

2. The microscopic model

In the model introduced by TL [2] the interface growth takes place in a square lattice of
edgeL with periodic boundary conditions. We assign a random pinning forceg(r ) uniformly
distributed in the interval [0, 1] to every cell of the square lattice. For a given applied pressure
p > 0 , we can divide the cells into two groups: those withg(r ) 6 p (free or active cells),
and those withg(r ) > p (blocked or inactive cells). Denoting byq, the density of inactive
cells on the lattice, we haveq = 1− p for 0 < p < 1 andq = 0 for p > 1. The interface is
specified completely by a set of integer column heightshi (i = 1, . . . , L). At t = 0 all columns
are assumed to have the same height, equal to zero. During growth, a column is selected at
random, say columni, and its height compared with those of its neighbouring columns(i−1)
and(i + 1). The growth event is defined as follows. Ifhi is greater than eitherhi−1 or hi+1 by
two or more units, the height of the lower of the two columns(i−1) and(i +1) is incremented
by one (in the case of the two being equal, one of the two is chosen with equal probability). In
the opposite case,hi < min(hi−1, hi+1) + 2, the columni advances by one unit provided that
the cell to be occupied is an active cell. Otherwise no growth takes place. In this model, the
time unit is defined as one growth attempt. In numerical simulations at each growth attempt
the timet is increased byδt , whereδt = 1/L. Thus, afterL growth attempts the time is
increased by one unit. In our simulations we usedL = 8192 and a time interval much less
than the crossover time to the static regime.

We consider the evolution of the height of theith site for the process described above. We
assume periodic boundary conditions in a one-dimensional lattice ofL sites. At the timet a
sitej is chosen at random with probability 1/L. Let us denote byhi(t) the height of theith
generic site at timet . The set of{hi, i = 1, . . . , L} defines the interface between wet and dry
cells. The time evolution for the interface in a time stepδt = 1/L is

hi(t + δt) = hi(t) +
1

L
Gi(hi−1, hi, hi+1) (1)
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where
Gi = Wi+1 +Wi−1 + Fi(h

′
i )Wi (2)

with
Wi±1 = 2(hi±1− hi − 2){[1−2(hi − hi±2)] + δhi ,hi±2/2}
Wi = 1−2(hi −min(hi−1, hi+1)− 2).

Hereh′i = hi + 1 and2(x) is the unit step function defined as2(x) = 1 for x > 0 and equal
to zero otherwise.Fi(h′i ) equals one if the cell at the heighth′i is active (i.e. the growth may
occur at the next step) or zero if the cell is inactive.Fi is the interface activity function.Gi

takes into account all the possible ways the sitei can grow. The height in the sitei is increased
by one with probability:
(1) 1 if j = i + 1 and hi+1 > hi + 2 and hi < hi+2

(2) 1
2 if j = i + 1 and hi+1 > hi + 2 and hi = hi+2

(3) 1 if j = i − 1 and hi−1 > hi + 2 and hi < hi−2

(4) 1
2 if j = i − 1 and hi−1 > hi + 2 and hi = hi−2

(5) 1 if j = i and hi < min(hi−1, hi+1) + 2 and Fi(h
′
i ) = 1.

Otherwise, the height is not increased. The cases (1)–(4) are related to growth due to the
neighbours of the sitei. We shall call these mechanisms, growth by ‘diffusion’. Note that
these growths are not related to the disorder of the substratum. The factor1

2 takes into account
the equality of first-neighbour heights at the(i ± 1)th site in the cases (2) and (4). Case (5) is
related to local growth, i.e., if the sitei is chosen and the difference of heights between theith
and the lowest of its neighbours is less than two, then the height of the chosen site increases by
one provided that the cell above the interface is active. We shall call this mechanism, growth
by ‘substratum’.

3. Mean height speed and interface activity density

ReplacingL = 1/δt and taking the limitδt → 0, equation (1) becomes dhi/dt = Gi .
Averaging over the lattice we obtain (h = 〈hi〉)

dh

dt
= 〈1−Wi〉 + 〈FiWi〉. (3)

This equation allow us to identify two separate contributions: diffusion,〈1 − Wi〉, and
substratum,〈Fi Wi〉†. Yang and Hu [6] defined two kinds of growth events: an event in
which the growth occurs at the chosen site (typeA—defined by us as substratum growth) and
an event in which the growth occurs at the adjoint site (typeB—our growth by diffusion).
They counted, in numerical simulation, the event numbers,NA(t) of typeA andNB(t) of type
B, in a time intervalL. They did not identify these terms as contributions to the mean height
speed (MHS). Notice thatNA(t) ∝ 〈Fi Wi〉 andNB(t) ∝ 〈1−Wi〉 (see figure 1). We shall
see in section 4 that the separation of those two terms allows us to show how the diffusion
enhances the roughness near the critical value. The separation into two contributions for all
the quantities studied in this paper has never been done before.

The substratum contribution can be expressed asf − 〈Fi (1−Wi)〉, wheref = 〈Fi〉 is
the IAD. We found an amazing numerical result:

〈Fi(1−Wi)〉 = p〈1−Wi〉. (4)

† To compute equation (3) or any equation derived from the ME we froze the simulation at a timet . For this
configuration we compute for theith site all the contributions to the growth of this site in the next timet + δt without
changing the configuration. Then, we average over the lattice and over realizations. This technique has been employed
in other systems, see [5].
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Figure 1. ln–ln plot of 〈FiWi〉 (�) and〈1−Wi〉 (◦) versust . The parameterq is (a) 0.51(b)
0.539(c) 0.6.

We could not analytically obtain this result. Notice thatFi and 1−Wi are not independent,
and thatf 6= p for t > 0, as we shall see below. Using equation (4), the IAD is

f = p〈1−Wi〉 + 〈FiWi〉. (5)

Figure 2 shows both sides of this equation as a function of time showing that equation (4)
holds. Notice the similarity between equation (3) and (5). Figure 1 shows the diffusion and
the substratum contributions as a function of the time for various values ofq. At the initial time
dh/dt = f = p. In the early time regime the substratum contribution dominates the diffusion
one, because 1− Wi is very small. The substratum contribution dominates the behaviour
of f and dh/dt in the early regime. As growth continues, the probability that growth will
occur by diffusion becomes larger; the diffusion contribution increases and the substratum one
decreases. This can be explained heuristically: inactive sites generate a difference of heights
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Figure 2. ln–ln plot off/p versust . The symbols
show the right-hand side of equation (4) (in units of
p), computed as explained in [5]. The full curve
show the left-hand side of the same equation (in
units ofp) wheref = 〈Fi〉. The parameterq is
0.51 (�), 0.539 (◦) and 0.6 (5). The critical case
shows that the IAD goes ast−η with η ' 0.40.

Figure 3. ln–ln plot of p−1dh/dt versust . The
parameterq is 0.51 (4), 0.539 (◦) and 0.6 (5).
All cases shows the same behaviour in the early
time regime. The subcritical case shows that the
MHS asymptotically goes to certain constant. The
critical case shows that the mean height goes ast−β .
The supercritical case shows that the mean height is
asymptotically constant.

greater than two between any site and its neighbour, enhancing the growth by diffusion. As time
goes on, long chains of pinned sites are generated, slowing down the diffusion contribution and
hence the substratum one. Forq < qc these contributions, which in turn dominate, saturate to
equilibrium in the asymptotic regime; while, forq > qc, both contributions go to zero because
the system becomes pinned. At the critical value both contributions gives rise to a power
law in the IAD and the MHS. Notice that only at the critical value does a power-law scaling
hold for the MHS (see figure 3), which contradicts [2]. This was shown for the roughness by
Braunstein and Buceta [4].

4. Roughness

From equation (1), the temporal derivative of the square interface width (DSIW) is:

dw2

dt
= 2 〈(hi − 〈hi〉)Gi〉. (6)
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Figure 4. DSIW (full curve), and its diffusion (◦) and substratum (�) contributions versus lnt ,
for q equal to 0.3 (a), 0.539(b) and 0.6 (c).

ReplacingGi from equation (2), the DSIW can also be expressed by means of substratum and
diffusion additive contributions. The diffusion contribution is

2[〈(1−Wi)min(hi−1, hi+1)〉 − 〈1−Wi〉〈hi〉] (7)

and the substratum contribution is

2[〈hiFiWi〉 − 〈hi〉〈FiWi〉] (8)

where the relation2(x−x ′)+2(x ′ −x)− δ(x−x ′) = 1 has been used to derive the diffusion
contribution. In figure 4 we plot both contributions as a function of time for various values of
q. At short times, the diffusion process is unimportant because1h is mostly less than one.
As t increases, the behaviour of this contribution depends onq. Notice, from equation (7),
that the diffusion contribution may be either negative or positive. The negative contribution
tends to smooth out the surface. Figure 4 shows that this case dominates for smallq. The
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positive diffusion contribution enhances the roughness. This last effect is very important at
the critical value. At this value, the substratum contribution is practically constant, but the
diffusion contribution is very strong, enhancing the roughness. This last contribution has
important effects on the power-law behaviour. We think that it is amazing how the diffusion
plays a dominant role in roughening the surface. To our knowledge, the strong effect on the
roughness, at the criticallity, of the diffusion contribution has never been proven before.

Generally speaking, the substratum roughens the interface while the diffusion flattens it
for smallq, but the diffusion also roughens the interface whenq increases. The diffusion is
enhanced by substratum growth. The growth by diffusion may also increase the probability
of substratum growth. This crossing interaction mechanism makes the growth by diffusion
dominant near the criticality.

5. Conclusions

We wrote the ME for the evolution of the height in the TL model. The ME allows us to separate
the substratum and the diffusion contributions and to explain the great interplay between them.
We found that both contributions to the MHS are related in simple way. We found an amazing
numerical result that allows us to derive the IAD in a simple way. The analytical proof of
this numerical result is still open. All the quantities studied show the strong interplay of the
diffusion and the substratum contribution in the dynamics. The substratum growth enhances
the diffusion; increasing the growth by diffusion may increase the probability of substratum
growth, and vice versa. This crossing interaction mechanism makes the diffusion contribution
dominant at the criticality. The diffusion contribution of the DSIW shows different behaviour
dependingq. In the intermediate regime, whenq is small, this contribution is negative,
smoothing out the surface. It is astonishing that asq increases the contribution becomes
positive, roughing the surface. Finally, we are sure that other DPD growth models would
permit separation into two contributions with the same features of the TL model.
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